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String Processing Overview

● What is string processing?
– String processing refers to any algorithm that 

works with data stored in strings.

– We will cover two vital areas in string 
processing

● String representation
● Pattern matching



  

Strings

● What is a string?
– The word 'string' is commonly used to refer to 

any chunk of text. However this can also be 
extended to mean large chunks of binary data.

– There are lots issues that arise with strings in 
the real world:

● Examples of strings:
– The quick brown fox jumped over the lazy cow.

– 那只敏捷的棕色狐狸跳过了懒牛

● We typically only see the first example.



  

String Operations

● Concatenation:
– “Hello” + “World” = “HelloWorld”

● Indexing:
– “HelloWorld”[5] = 'W'

● Iteration:
– “HelloWorld” = 'H', 'e', 'l', 'l', 'o', 'W', 'o', 'r', 'l', 'd'

● Substring:
– “HelloWorld”.substring(3, 3) = “loW”



  

String Representations

● The representation used for a string can be an 
important factor in efficiency.

● There are two main representations that we 
will discuss:

– Variable-length arrays

– Ropes



  

String Representations

● Variable-length arrays
– Each character is stored sequentially in 

memory.

– Various implementations:
● A terminating character marks the end of the 

string. Often called a null or '\0' - CStrings
● The length is encoded into the initial few bytes of 

the string. - PStrings

– Implemented for you in std::string and via char* 
arrays.



  

String Representations

● Concatenation(of N and M length strings):
– O(N + M) *** Why not O(M)?

● Indexing:
– O(1)

● Iteration(of N length strings):
– O(N) – always O(1) per element 

● Substring(of length S in string of length N):
– O(S)



  

String Representations

● Example code - string 

string a = “Hello”; // a is now “Hello”

string b(“World”); // b is now “World”

string c; // c is now “”

string d = a + “ “ + b + c; // d is “Hello World” 

 

string e = 'Hello'; // ERROR - ' ' is for characters

string f  = “Hello\0World”; // Take a guess...



  

String Representations

● What about char arrays?
– Really horrible to use in a lot of cases.

– char* isn't a class so no operators overloaded.
● Horrible functions need to be used!

– Sometimes they are necessary:
● Some functions only take (const) char* arrays. 

We can convert from a string to char array via 
string.c_str()!

– They have their benefits though.
● Argument is basically: array vs vector



  

String Representations

● Ropes
– A heavy duty string. Characters are stored in a 

concatenation tree. 
● Internal tree nodes mean concatenate the left 

and right children. 
● Leaf nodes hold the data of the string.

– Not an easy thing to do in a competition. Also 
have to worry about balancing issues.

– Implemented for you in __gnu_cxx:crope
● Pretty much the same API as std::string with 

some notable exceptions.



  

String Representations

● Concatenation(of N and M length strings):
– O(1) or O(logN)

● Indexing:
– O(logN)

● Iteration(of N length strings):
– O(N) or O(NlogN) 

● Substring(of length S in string of length N):
– O(logN)



  

String Representations

● Interesting facts about Ropes:
– A very functional data structure. 

● When a substring is requested, very little memory 
is required.

● Insertions do not require a significant of amount.

– There are some languages which have Ropes 
as their string data structure of choice.

● Cedar



  

String Representations

● There are many caveats with Ropes:
– A much higher constant factor on all algorithms.

– Iterators and Indexing
● crope::iterator vs crope[i]
● ++iterator vs iterator++

– Consecutive characters might not be 
consecutive in memory.

– They work better for algorithms which do not 
require random access.



  

String Matching

● What is String Matching?
– String Matching is the process of determining 

whether a given string is a substring of 
another string.

– String here often refers to texts of characters, 
but could also apply to other things such as 
sequences of numbers.



  

String Matching

● We are given two strings
● The haystack

– The string in which we are searching.

● The needle
– The string for which we are searching.

● Example
– Haystack: ABRACADBRANANAFOOBRA

– Needle:    BRA



  

String Matching

● Many algorithms exist for solving this problem.
– Naïve

● Brute Force String Matching

– Needle Optimisation
● Boyer-Moore's Algorithm
● Horspool's Algorithm
● Rabin Karp Algorithm
● Knuth-Morris-Pratt Algorithm

– Haystack Optimisation
● Suffix Trees
● Suffix Arrays



  

String Matching

● Most of these algorithms are too complicated 
for the current IOI syllabus.

● We shall discuss four algorithms:
– Brute Force String Matching

– Rabin-Karp String Matching

– Boyer-Moore String Matching

– Knuth-Morris-Pratt String Matching



  

Brute Force String Matching

● Brute Force String Matching is the 'just do it' 
solution.

– Place the needle at each valid position in the 
haystack.

– If all corresponding positions in both strings 
match, then we have found a match.

– If a single character does not match we have a 
mismatch.



  

Brute Force String Matching

● The good
– It is conceptually simple and can be modified 

easily.

– It is simple to write. In C++ it's only a few lines.

– It doesn't necessarily perform slowly. It has an 
average case performance of O(N + M).

● The bad
– It has a poor worst case of O(NM).



  

Brute Force String Matching

● Example
– Haystack: AAAAAAA

– Needle: AAB

AAAAAAA

AAB

  AAB

    AAB

       AAB

         AAB



  

Brute Force String Matching

● This method is very easily modifiable.

– Approximate String Matching is only a one or two 
line change to the code.

– Can be potentially sped up by doing hacks.
● Jumping by the length of the needle testing 

for a match of all characters.
● Testing multiple characters a time.
● …

● The law of diminishing returns applies.

● You still have a terrible worst-case performance.



  

Rabin-Karp String Matching

● Rabin-Karp String Matching uses hashing to 
reduce needless matching.

– Similar to the Brute Force Algorithm.

– Relies on the notion of a rolling hash function of 
strings.

– It computes the hash of the needle and stores it.

– It then computes the hash of each successive 
substring of the haystack.

– When the two are equal, we have a potential 
match.



  

Rabin-Karp String Matching

● What is a rolling hash function?
– These allow efficient computation of hash 

functions of consecutive substrings.

● Two fast operations need to be supported:
– Hash(s):

● Compute the hash of a string s.

– Update(h, a, b):
● Update the hash value, h, by deleting the first 

character a and adding the last character b.



  

Rabin-Karp String Matching

● Example
– Haystack: AGCDDE

– Needle: DD
● Hashes:

– H = hash(DD)

– H1 = hash(AG)

– H2 = hash(GC)  = update(H1, A, C)

– H3 = hash(CD)  = update(H2, G, D)

– H4 = hash(DD)  = update(H3, C, D)

– H5 = hash(DE)  = update(H4, D, E)



  

Rabin-Karp String Matching

● Concrete Example
– hash(s) is the sum of all ASCII characters in s.

– update(h, a, b) is then h - a + b
● Rabin-Karp:

– H = hash(DD) = 136

– H1 = hash(AG) = 136 

– H2 = hash(GC)  = update(H1, A, C) = 133

– H3 = hash(CD)  = update(H2, B, D) = 135

– H4 = hash(DD)  = update(H3, C, D) = 136

– H5 = hash(DE)  = update(H4, D, E) = 137



  

Rabin-Karp String Matching

● Examples of rolling hash functions
– Sum of all characters in the string.

– Product of all characters in the string modulo n.

● These are easy to implement, however they do 
not have good properties as hash functions.

● A better function:
– Choose two relatively prime numbers a and n.

– Let the hash value be the sum of a power series 
increasing in a, with the characters as 
coefficients, modulo n.



  

Rabin-Karp String Matching

● The good
– It is still pretty easy conceptually.

– It is still pretty simple to write. In C++ it's only a 
few lines in a few functions

– It will almost always outperform Brute Force 
String Matching.

● The bad
– Still a rare worst case performance of O(NM).

– Not easy to modify.



  

Rabin-Karp String Matching

● There are some interesting modifications that can be 
made to this algorithm

– Using a hashtable we can test for multiple needles 
at the same time.

● Store each needle hash in the table.
● We simply check the hashtable to see which 

needles are matched.
● Much better performance than Brute Force.

● Other modifications are not so easy

– Approximate string matching?



  

Boyer-Moore String Matching

● Boyer-Moore String Matching is the smart 
solution.

– It is optimal in that  there is no asymptotically 
better algorithm.

● Modifications to the Brute Force algorithm:
– Use tables to tell us how far we can jump 

ahead.

– Try all matches from back to front.
● Why?



  

Boyer-Moore String Matching

● From the Needle two tables are constructed:
– Bad character shift table:

● This table says how far you can safely jump if 
you mismatch at a particular character in the 
needle.

● This table is the size of the alphabet.

– Good suffix shift table:
● This table says how far you can safely jump if 

you mismatch at a particular point in the needle.
● This table is the size of the needle.

– If we get a mismatch we jump the maximum.



  

Boyer-Moore String Matching

● Bad character shift table:
– If a character does not occur in the needle, we can 

jump the length of the needle.

– Loop through the needle from the first character to 
the last:

● We set the character's value to it's distance to the 
end.

– If it does occur, we calculate the distance required 
to 

– When you get a mismatch you use the character in 
the haystack to determine the jump.



  

Boyer-Moore String Matching

● Good suffix shift table:
– Notes how much you can skip based on repeated 

the suffices in the needle.

– Loop through the needle from the last character to 
the first:

● Determine the minimum amount to shift to 
align suffices.

● This can be done created in linear time using a 
complicated algorithm.

● A naïve algorithm can be used which is quadratic in the 
size of the needle.



  

Boyer-Moore String Matching

● Example



  

Boyer-Moore String Matching

● The good
– Incredibly fast. No more than 3N comparisons 

are needed in the worst case.

– Incredibly fast. No more than 3N comparisons 
are needed in the worst case.

– Incredibly fast. No more than 3N comparisons 
are needed in the worst case.

● The bad
– Very complicated, both conceptually and in 

code.

– Again, not easy to modify.



  

Boyer-Moore String Matching

● Boyer-Moore is incredibly fast.

– The algorithm can be as fast as O(N/M)

– It is still not as complicated as other optimal string 
searching algorithms.

● See Knuth-Morris-Pratt String matching.
– Leaving out the complicated good suffix table gives a 

variant called Boyer-Moore-Horspool.
● Worst case O(NM)
● Store each needle hash in the table.

● Other modifications are not so easy

– Approximate string matching?



  

Conclusion

● Many algorithms for string matching.

– We have looked at:
● Brute force
● Rabin-Karp
● Boyer-Moore
● Knuth-Morris-Pratt

– All of these preprocess only the needle.

– There are algorithms which preprocess the 
haystack.

● Suffix Trees
● Suffix Arrays



  

Conclusion

● Choose wisely

– Each algorithm is a trade-off between 
coding complexity and speed.

– Not all algorithms support the same 
modifications.

– C++ string find is implemented efficiently, 
so explicit coding may not be necessary.

● Do calculations to see which algorithm you can 
get away with.
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