

String Processing Workshop

String Processing Overview

● What is string processing?
– String processing refers to any algorithm that

works with data stored in strings.

– We will cover two vital areas in string
processing

● String representation
● Pattern matching

Strings

● What is a string?
– The word 'string' is commonly used to refer to

any chunk of text. However this can also be
extended to mean large chunks of binary data.

– There are lots issues that arise with strings in
the real world:

● Examples of strings:
– The quick brown fox jumped over the lazy cow.

– 那只敏捷的棕色狐狸跳过了懒牛

● We typically only see the first example.

String Operations

● Concatenation:
– “Hello” + “World” = “HelloWorld”

● Indexing:
– “HelloWorld”[5] = 'W'

● Iteration:
– “HelloWorld” = 'H', 'e', 'l', 'l', 'o', 'W', 'o', 'r', 'l', 'd'

● Substring:
– “HelloWorld”.substring(3, 3) = “loW”

String Representations

● The representation used for a string can be an
important factor in efficiency.

● There are two main representations that we
will discuss:

– Variable-length arrays

– Ropes

String Representations

● Variable-length arrays
– Each character is stored sequentially in

memory.

– Various implementations:
● A terminating character marks the end of the

string. Often called a null or '\0' - CStrings
● The length is encoded into the initial few bytes of

the string. - PStrings

– Implemented for you in std::string and via char*
arrays.

String Representations

● Concatenation(of N and M length strings):
– O(N + M) *** Why not O(M)?

● Indexing:
– O(1)

● Iteration(of N length strings):
– O(N) – always O(1) per element

● Substring(of length S in string of length N):
– O(S)

String Representations

● Example code - string

string a = “Hello”; // a is now “Hello”

string b(“World”); // b is now “World”

string c; // c is now “”

string d = a + “ “ + b + c; // d is “Hello World”

string e = 'Hello'; // ERROR - ' ' is for characters

string f = “Hello\0World”; // Take a guess...

String Representations

● What about char arrays?
– Really horrible to use in a lot of cases.

– char* isn't a class so no operators overloaded.
● Horrible functions need to be used!

– Sometimes they are necessary:
● Some functions only take (const) char* arrays.

We can convert from a string to char array via
string.c_str()!

– They have their benefits though.
● Argument is basically: array vs vector

String Representations

● Ropes
– A heavy duty string. Characters are stored in a

concatenation tree.
● Internal tree nodes mean concatenate the left

and right children.
● Leaf nodes hold the data of the string.

– Not an easy thing to do in a competition. Also
have to worry about balancing issues.

– Implemented for you in __gnu_cxx:crope
● Pretty much the same API as std::string with

some notable exceptions.

String Representations

● Concatenation(of N and M length strings):
– O(1) or O(logN)

● Indexing:
– O(logN)

● Iteration(of N length strings):
– O(N) or O(NlogN)

● Substring(of length S in string of length N):
– O(logN)

String Representations

● Interesting facts about Ropes:
– A very functional data structure.

● When a substring is requested, very little memory
is required.

● Insertions do not require a significant of amount.

– There are some languages which have Ropes
as their string data structure of choice.

● Cedar

String Representations

● There are many caveats with Ropes:
– A much higher constant factor on all algorithms.

– Iterators and Indexing
● crope::iterator vs crope[i]
● ++iterator vs iterator++

– Consecutive characters might not be
consecutive in memory.

– They work better for algorithms which do not
require random access.

String Matching

● What is String Matching?
– String Matching is the process of determining

whether a given string is a substring of
another string.

– String here often refers to texts of characters,
but could also apply to other things such as
sequences of numbers.

String Matching

● We are given two strings
● The haystack

– The string in which we are searching.

● The needle
– The string for which we are searching.

● Example
– Haystack: ABRACADBRANANAFOOBRA

– Needle: BRA

String Matching

● Many algorithms exist for solving this problem.
– Naïve

● Brute Force String Matching

– Needle Optimisation
● Boyer-Moore's Algorithm
● Horspool's Algorithm
● Rabin Karp Algorithm
● Knuth-Morris-Pratt Algorithm

– Haystack Optimisation
● Suffix Trees
● Suffix Arrays

String Matching

● Most of these algorithms are too complicated
for the current IOI syllabus.

● We shall discuss four algorithms:
– Brute Force String Matching

– Rabin-Karp String Matching

– Boyer-Moore String Matching

– Knuth-Morris-Pratt String Matching

Brute Force String Matching

● Brute Force String Matching is the 'just do it'
solution.

– Place the needle at each valid position in the
haystack.

– If all corresponding positions in both strings
match, then we have found a match.

– If a single character does not match we have a
mismatch.

Brute Force String Matching

● The good
– It is conceptually simple and can be modified

easily.

– It is simple to write. In C++ it's only a few lines.

– It doesn't necessarily perform slowly. It has an
average case performance of O(N + M).

● The bad
– It has a poor worst case of O(NM).

Brute Force String Matching

● Example
– Haystack: AAAAAAA

– Needle: AAB

AAAAAAA

AAB

 AAB

 AAB

 AAB

 AAB

Brute Force String Matching

● This method is very easily modifiable.

– Approximate String Matching is only a one or two
line change to the code.

– Can be potentially sped up by doing hacks.
● Jumping by the length of the needle testing

for a match of all characters.
● Testing multiple characters a time.
● …

● The law of diminishing returns applies.

● You still have a terrible worst-case performance.

Rabin-Karp String Matching

● Rabin-Karp String Matching uses hashing to
reduce needless matching.

– Similar to the Brute Force Algorithm.

– Relies on the notion of a rolling hash function of
strings.

– It computes the hash of the needle and stores it.

– It then computes the hash of each successive
substring of the haystack.

– When the two are equal, we have a potential
match.

Rabin-Karp String Matching

● What is a rolling hash function?
– These allow efficient computation of hash

functions of consecutive substrings.

● Two fast operations need to be supported:
– Hash(s):

● Compute the hash of a string s.

– Update(h, a, b):
● Update the hash value, h, by deleting the first

character a and adding the last character b.

Rabin-Karp String Matching

● Example
– Haystack: AGCDDE

– Needle: DD
● Hashes:

– H = hash(DD)

– H1 = hash(AG)

– H2 = hash(GC) = update(H1, A, C)

– H3 = hash(CD) = update(H2, G, D)

– H4 = hash(DD) = update(H3, C, D)

– H5 = hash(DE) = update(H4, D, E)

Rabin-Karp String Matching

● Concrete Example
– hash(s) is the sum of all ASCII characters in s.

– update(h, a, b) is then h - a + b
● Rabin-Karp:

– H = hash(DD) = 136

– H1 = hash(AG) = 136

– H2 = hash(GC) = update(H1, A, C) = 133

– H3 = hash(CD) = update(H2, B, D) = 135

– H4 = hash(DD) = update(H3, C, D) = 136

– H5 = hash(DE) = update(H4, D, E) = 137

Rabin-Karp String Matching

● Examples of rolling hash functions
– Sum of all characters in the string.

– Product of all characters in the string modulo n.

● These are easy to implement, however they do
not have good properties as hash functions.

● A better function:
– Choose two relatively prime numbers a and n.

– Let the hash value be the sum of a power series
increasing in a, with the characters as
coefficients, modulo n.

Rabin-Karp String Matching

● The good
– It is still pretty easy conceptually.

– It is still pretty simple to write. In C++ it's only a
few lines in a few functions

– It will almost always outperform Brute Force
String Matching.

● The bad
– Still a rare worst case performance of O(NM).

– Not easy to modify.

Rabin-Karp String Matching

● There are some interesting modifications that can be
made to this algorithm

– Using a hashtable we can test for multiple needles
at the same time.

● Store each needle hash in the table.
● We simply check the hashtable to see which

needles are matched.
● Much better performance than Brute Force.

● Other modifications are not so easy

– Approximate string matching?

Boyer-Moore String Matching

● Boyer-Moore String Matching is the smart
solution.

– It is optimal in that there is no asymptotically
better algorithm.

● Modifications to the Brute Force algorithm:
– Use tables to tell us how far we can jump

ahead.

– Try all matches from back to front.
● Why?

Boyer-Moore String Matching

● From the Needle two tables are constructed:
– Bad character shift table:

● This table says how far you can safely jump if
you mismatch at a particular character in the
needle.

● This table is the size of the alphabet.

– Good suffix shift table:
● This table says how far you can safely jump if

you mismatch at a particular point in the needle.
● This table is the size of the needle.

– If we get a mismatch we jump the maximum.

Boyer-Moore String Matching

● Bad character shift table:
– If a character does not occur in the needle, we can

jump the length of the needle.

– Loop through the needle from the first character to
the last:

● We set the character's value to it's distance to the
end.

– If it does occur, we calculate the distance required
to

– When you get a mismatch you use the character in
the haystack to determine the jump.

Boyer-Moore String Matching

● Good suffix shift table:
– Notes how much you can skip based on repeated

the suffices in the needle.

– Loop through the needle from the last character to
the first:

● Determine the minimum amount to shift to
align suffices.

● This can be done created in linear time using a
complicated algorithm.

● A naïve algorithm can be used which is quadratic in the
size of the needle.

Boyer-Moore String Matching

● Example

Boyer-Moore String Matching

● The good
– Incredibly fast. No more than 3N comparisons

are needed in the worst case.

– Incredibly fast. No more than 3N comparisons
are needed in the worst case.

– Incredibly fast. No more than 3N comparisons
are needed in the worst case.

● The bad
– Very complicated, both conceptually and in

code.

– Again, not easy to modify.

Boyer-Moore String Matching

● Boyer-Moore is incredibly fast.

– The algorithm can be as fast as O(N/M)

– It is still not as complicated as other optimal string
searching algorithms.

● See Knuth-Morris-Pratt String matching.
– Leaving out the complicated good suffix table gives a

variant called Boyer-Moore-Horspool.
● Worst case O(NM)
● Store each needle hash in the table.

● Other modifications are not so easy

– Approximate string matching?

Conclusion

● Many algorithms for string matching.

– We have looked at:
● Brute force
● Rabin-Karp
● Boyer-Moore
● Knuth-Morris-Pratt

– All of these preprocess only the needle.

– There are algorithms which preprocess the
haystack.

● Suffix Trees
● Suffix Arrays

Conclusion

● Choose wisely

– Each algorithm is a trade-off between
coding complexity and speed.

– Not all algorithms support the same
modifications.

– C++ string find is implemented efficiently,
so explicit coding may not be necessary.

● Do calculations to see which algorithm you can
get away with.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

